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SPECIFIED DISTRTBUTIONS OF LIFT AT
SUPERSONIC SPEEDS

By Barrett S. Baldwin, Jr.

SUMMARY

The linearized supersonlic flow theory has been applied to the
calculation of the camber and twist required for various 1ift dis—

tributions on a triangular wing with leading edges behind the Mach
cone,

Several speclfic examples have been derived and plots of the
cambered surfaces, the corresponding 1lift distributions, and values
of the theoretical drag coefficients are presented. The examples
were chosen to avoid the singularities in 1ift distribution or
camber that appear in previously given solutions and may be useful
for practical spplications since they avoid large pressure peaks
and extreme angles of twist.

INTRODUCTION

The design of cambered wings requires a knowledge of the rela—
tion between the shape of the lifting surface and the distribution
of 11ft over it. For alrfolls of trianguler plan form at supersonic
speed, two examples of this relatlon are known; nsmely, the 1ift
distribution for a flat wing at an angle of attack (reference 1) and
the camber required to support a uniform distribution of 1ift over
the surface (reference 2). ‘

The solution for the flat wing shows an infinite concentration
of 1ift along the leading edges, while that for the uniform 1ift
distribution shows that an extremely large angle of attack at the
center line of the trlangle would be required. Thus, both solutions
show singularities which the designer may wish to avoid. It was
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suggested to the present author by R. T. Jones that these undesir—
able singularities in the 1ift and camber distribution could be
avoided, at a particular 1ift coefficlent, by an appropriate choice
of the functions used to represent the 1ift distributions. In the
present report, several examples of such nonsingular 1ift distribu—
tions and their corresponding camber shapes have been derived.

Following a brief review of the method, a series of fumctions
capable of representing a variety of 1lift distributions is presented.
Tt is shown thet the desired property of the 1ift distribution and
camber shape can be achleved by an asppropriate relation between the
coefficients of this series. Numérical examples showing 1ift
distributions and camber shapes which involve the first few terms of
the general series are then given.

METHOD
\ Conical Flow Theory

As in the usual linearized theory (references 3 and %), the
boundery conditions are satisfied in the horizontal plane rather
then in the actual plene of the wing. The coordinate system, as
depicted in figure 1, is chosen so that the apex of the triangle is
at the orlgin. The positive x axis extends back in the plane of
symmetry of the triaengle, the z direction is vertical, and the plane
of the triangle is approximately horizontal. The symbols used are
defined in Appendix A.

The fractional perturbation velocities are denoted by u, v, and
w (i.e., fractions of streem velocity) in the x, y, and z directions,
respectively. The difference in pressure coefficient between upper
and lower surfaces 1s glven by

Fa
A Y
d
and. the slope of the surface by
dz
—_—= YW 4

dx

The linearized equation is solved using the method described in
reference 4. Solutions are found for & Mach number of «/Z, but may
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be extended to other Mach numbers by the use of the well-known Prandtl
transformation,

In reference 4 it 1s shown that a special complex variable
exists such that if £(t{) is any analytic function of ¢, _then

u(t) = real part of £(f) and w(f{) = real part of (-i "Eg'z—z df>
is a conical solution of the linearized equation.

The complex variable ¢ represents a transformation of the
conical flow fileld which causes no distortion of the airfoil coordi-
nates on the 2z=0 plane inside the Mach cone, but places the Mach

cone along the real axls in the { plane from { = — = to —1 and
from 1 to « The exact expression for ¢{ 1s

_ _2€
¢ = 1+e2

€ = —7&=
X+ NxP—y"—z®
The use of the variable { results in a simplificatlion of
boundary conditions on the plane 2=0, since it can be shown that
{ approaches y + iz as 2z approaches zero.
X
To yleld the lifting case, £({) must be so chosen that its real
part will vanish everywhere on the real axis in the { plane except
on the wing, which extends from ¢ = -m to { = +m., In addition, the
real part of £(¢) must be antisymmetric with respect to the real axis
in the { plane. If the wing lies emntirely within the Mach cone,
£(t) must vanish at infinity. This latter requirement arises
because in the { plane the Mach cone is to be found at iInfinity in
any direction as well as along the real axis as previously described.

For wings inside the Mach cone, the integration for w can be
taken along the real axis from %'=lto§'=§ meking w zero
everywhere on the Mach cone if £({) is zero at infinity. The term
t* 1p a dummy veriable of inbegration replacing { in the integrand.

Thus, to represent the 1ifting surface and its pressure distri-
bution, £(t) must have the following properties:

1. #£(t) must be an analytic function of ¢.

e T S v pn B g e e . At e - [ _
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2, f£(t) oust vanish at infinity.

3. The real part of f£({) along the real axis must represent
the desired 1ift distribution of the wing.

4. The real part of £(t) must be antisymmetric with respect to
the real axis in the { plane.

When checking a prospective £(t) esgainst these four require—
ments, { must be considered a complex variable. However, once
these requirements are met, all subsequent calculations are made on
the 2z=0 plane, which corresponds to the real axis in the { ©plane,
go that f 1is equal to y/x, =& resl varisble. Thus in the final
expressions for u(f), w(t), and ; (t), t 1is equal to y/x.

An exsmple of a function satisfylng the foregoing requirement is

Q) ==

Here

u(t) =7m%l?for lt] Sm
and

w(t) =0 for [t|2Zm
or
u(x,y,0) =]nﬁ=ni=?;’§ over the wing.

Since

_ L [T

w(t) = real part (-1 L/: -—-:%,—df>

it is Pfound that
w(g)'=—$E (JI==) for |C] Sn

and
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w(t) =%—%—iE <sin-l _%E-—-mg’ ,/l—-m2> for |t| 2m

This solution glves the 1lift distribution for a flat triangle at an
angle of attack. (See reference 1.)

As a second example, choosse

£(t) = 1 log 2B
{-m

where in thils case it is found that

u(t) =x for [¢(]| Sm
and
u(t) = 0 for |t| Zm
Integration shows that
w(t) = 1:12 <cossh_l ]J;:EQ + cosh™ 1__1:5 > —% cosh™ %

for the whole reglon. This solutlon gives the required camber and
twist for a unlform lift distribution. (See reference 2.)

General Expresslons for Lift, Drag, and Camber -

The camber is determined from the relations

Z-w-=(3)

z(x,y) [lx W<§y;> axt (1a)
y

or

[
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The integration is taken from x! = ‘yl to x* = x so that the

stream surface in which the wing lies may start at 2=0 on the
Mach cone. Thus, the shape of the surface is obtained in the form

z = z(x,y).

Since the wing surfece is conical, its shape can be expressed
in the form -é— = % (t), that is, % = function of ¢ where
¢t = %. Furthermore, the integration for 2z can be accomplished

in terms of , +thus

el oy
£ @ ==l [ w ) age (1b)

gre

The magnitude of camber is related to the 1ift coefficient by
finding the common factor of u, w, and Z  +which will yield the
desired 1ift coefficient. x

- _totel 1ift ., _ 1 Ap =_l£ff
OL g X wing area S_/S:fqd's 8 Jg u ds

If u=Bu! where B 1is the desired factor,

CL=-l;—Bj;fu'ds

For the symmetrical trianguler wing extending from x=0 +to x=1
along the center line and from y =—m to y =+ m along the trall—
ing edge, the integration can be accomplished with a single Integra—
tion in terms of {. Since { 1s constant in the element of area
enclosed by a triangle the base of which is dy along the trailling
edge and the vertex of which is at the vertex of the wing,

+m
o= [ we) g
11

and, for & symmetrical distribution,
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=E]§f u'(§)d§orB=%x—-L . (2)
()

[ o

e}

The coefficient of drag due to 1ift is obtained as follows:

- Ap 4z o _ 4
CD“‘%/;/ 7!Bxa.'-ide;_--§fsf u X wis

The integration over the wing can again be reduced to a single
integration interms of ¢

m
o =—§f a(t)w(t)at (3)

(o]

No additional term for leading—edge suction is required because
the pressure distributions chosen have no infinite pressure peaks
along the leading edges. .

SERTES DEVELOPMENT FOR AN ARBITRARY LIFT DISTRIBUTION
Elements Sultable for Series Representation

The analytic functions
£o(t) = 1 log gj—ﬁ (%)

and.

21
fona(t) = iG—‘—— ”%‘*) , »l, 2, 3, eto. (5)

PR o T T N T e ey o = T et B S e, sy ox = ————
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can be superimposed to yield an arbitrary 1lift distribution extending
from -m to +m. The function of fon3 1s similar to that glven in

reference 5. The exponent is restricted to odd integers so that the

1ift distribution will be an even function of ¢, or symmetric with
respect to the center line of the triangle. Such a solution would be
. represented by a series of the form

O il
=1

The velocity components corresponding to the individual terms are

nopa(t) = real part [fm_l(;)} (6)

8 /it
1g2 l> (7)

Won—a1(f) = real part —f -—6— ton—
1

It can be seen that this family of functions has the required
properties of belng analytic, vanishing at infinity, and having real
parts which are antisymmetric wlth respect to the real axis in the
{ oplane. Alsothe lLpn-3 berms are zero everywhere on the real axis
except at [¢| S m.

As an example of the requirement that the real part of £(f) be
antisymmotric with respect to the real axls, it will be shown that
1(t— ./Qz-mz) moots this requirement., For this purpose { can be
taken equal to = since the argument can be restricted to the
region where 2z A&approaches zero, It is Immedlately apparent that

the real part of it is anti tric with respect to the real axis.
That the real part of i @2-1:12 has this symmetry is not obvious butb

1t can be seen as follows:
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Let

t+m = rleiq’l y; b= = rze:lcP2

where r; 1s the length of the line Joining the point, —m, on the
real axls to the point, { , in the { plane; and ¢y 1s the angle
this line makee wilth the positive direction along the real axis.
Similerly, r> 1s the length of the line Joining +m to { and @
is the angle this line mekes with the positive real axis.

Then
t3w® = (t+m) ({-m)
- rlei‘pl rzeifpa
- rlrzei(q)l‘l'q’z)
‘P!.gSPg
122 = 1 7o ei< 2 >

= 1117 [cos <qal.:p2> + 1 gin (‘V l;q)2>:|

and

real part (1v/ o) = — Nrizs sin <f’f-1-.‘é-?%>

From the definitions of ¢ and @, it follows that the real
part of 14fZmZ is always negative above the real axis and always
positive below.. Thle 1s seen by starting at a point aboye the real
axis with ¢ and 9o less than = and following a path which does
not pass through that part of the real axls between +m and -m.
Following a path that does pass between +m and —m d1g prohibited
because the real part of £({) will be discontinuous there if it is
antisymmetric. The real part of £({) is not discontinuous along the
real axls outslde of +m and -m because 1t passes through zero there.

e+ e A A~ ———— A b e RS A ot AT St A e TR~ T e e T W s N e e —— = —
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Orthogonality Relations

The upp-3; *terms are orthogonal in the interval -m to +m and
are zero at the limits of the interval. Any reasonable even conical
11Pt distribution can be expanded In an infinite series of uy, and

Upn—7 «

Let
{=m sin @
for |t| €m on the real axis, then

i(sin 6 — 1 cos )21

fopa(m sin 9)

= 11 20F1l(cog § + 1 sin 9)2R1

(-1)22 ei(2n—1)e

and finally
(—1)®2 [cos(2n~1)6 + 1 sin(2n-1)01(8)

fona(m sin 6)

since
real part [fan—l(m sin 9)]

I

Upp— (m sin 6)
(-=1)™? cos(2n-1)6 (9)

Upp—1 (m sin 6)

To establish the orthogonality of these functions, it is necessary

T
to evaluate f 2 uppy Uppy 46:
o)

T : T

f§u2n-—1 Upp— @6 =32-f2 cos(2n-1)6 cos(2r—-1)e 49

) -

2
or

T o, n 74 T
f‘? Ugn—1 Upr— 46 = { . }

o Ln=r (20)

Equation (10) is the required orthogonality relation.
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Let h(f) be any even function which is zero at ¢ =4 m.
Expanding h(m sin @) in the Fourier series,

h(m sin 6) = Z bon— (-1)" © cos(2n-1)8
n=1
and
X
n—-1 4 p2
boneg = (=) 'if h(m sin 6) cos(2n-1)o 48 (11)
Q

The term agup = ao® can be added to h(m sin 6) to glve a 1ift
digtribution which is not zero at { =im.

Then
' (m sin 8) = mox + Z boga(<1)" " cos(2n-1)0 (12)
n=1
or
(L) = ao + z ban—1 ven(t) (13)
n=1

Since the real part of <1 log —é:"ﬁ) =n for |t|Sm and the

2 2 2n—1
terms uop..; are the real parts of 1(@) it can be

seen that the f£'() which corresponds to u?(f) in equation (13)

is
£1(E) =1 [ao log é}j:; + Zl bzn_; <L___~/§-1 z—mf>2“’1 } (14)

— e e e e e e — e T ——————— ©— % ey i ene A e e
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which in terms of { =m sin 6 1is

[+9]
. sin 6+1 n—1
f*(m 8in 9) = 1 ap lo —-——-—-+Zb -1 cos(2n—-1)6
( ) o log ———— 2n— (—1) [cos( )
n=1
+ 1 sin(2n-1)6] (15)

By the use of the orthogonality relation (equation (10)) it can
be shown that no net 1ift is developed by Usp— ({) when n is’
greater than one.

The total 1ift is proportional to

j;fuds =£mu(g)ag

then
x
m )
f upn(f)at =f Uop—a(m sin 8) m cos 6 a8
o (o}
1
n—1 2
= (-1) mf cos(2n—-1)6 cos 6 a8
0
X
= mf Wppn— Wy 46
o
and

mit, n=1

jo" " wena(at j;; m} ' (16)

o
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From this relation the factor B, which relates the magnitude of
cember to the 1ift coefficient, can be expressed in terms of a,
and by, the flrst two coefficients of the Fourler expansion of

ut(t).

Therefore, if

u(f) =B [a-oﬂ + i bon—1 uen-l(O]

n=1
then
Bl CL _m CL
¥ m  F
[ﬂ ut(¢)ag (aommbl’l‘f
or
Cy,
B ———re 1
rr(llao+b1) ( 7)

Condition for a Finite Value of w({) at &=0

The expressionsg for Waop— &and wp all have the same type of
-]
infinity at (=0, mnamely, cosh % By an appropriate relation

between the coefficlents of the Fourler seriles, ths resultant

coeffiolent of cogh™® L may be made to vanish and the infinity

in w(t) at =0 will thereby be avoided.

According to A. Busemsnn in reference 3, the necessary and
sufficient condition that there be no infinity in w at §=0 1is
that df=0 at {=0.

Differentieting equation (15),
(af)g=0 = 1 [ Pagt 1 (—1)n“1(2n—1)b2n_1] @0 (=0 when 6=0)

Therefore the necessary and sufficient condition that there be

G
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no infinity in w at {=0 i=m

Pagt ) (-1)*(2a-1)bens = 0 (18)

n=1i

This relation res%ricts the 1ift distribution to the extent
that the value of u at {=0 must be less than the average value,
provided that no negative 1ift 1s allowed at any part of the wing.
Also the value of u at {=m depends on the shape -of the distri-
bution of u over the whole wing.

Exemples of Functions Contained in the Series Development

Evaluation of w(f{) and % ({) becames increasingly camplicated
for higher values of =n. The followlng is a list of the expressions
for u(t), w(t), and Z ({) of the first three terms of the series:
(They were derived by the use of equations (1a), (1b), (¥), (5), (6),
and (7). A sample derivation is glven in Appendix B.)

up(t) = =«
wo(t) = @ <cosh‘l %%— + cosh™™* %’—;%El >—-§ cosh™t .]gzl
2(t) = 1:12 (g:lm cosh™t %% —%ﬂ cosht 1—m§\> — 2 (w)
u; ( c) = _..__“:'nz_gz

m
wi(t) =1£n N1-t2 — = cosn™> ll + L \:F (sin—l ——i‘ 'l—l:m-?’ WhRE >
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) = 3 (Jl—g_Z— 14 cos‘lﬁ) * [K< Vi) - K ﬁ?)}-é(")

2
wet) = £ P

wo(t) = = 3 WAgF — &5 (14z)°/% 4 L <sin"l % ﬁ—m2> |
- % F (sin"l ——-:9—'12, NP >— ﬁg L VItE VP + % cosh—t|
_ng_(g) = —%(«/1—;2 - |t] cos—1§> - 525[ (2+£2) N1t - 3 |§|cos—1§:|

P 2 B (V) -2 (Vi) + 2 (o)

The preceding expression for i— (t) 1s derived fram an integra—
tion of only those terms of w which are variable over the range
|§| S m plus a constant term which is needed along the line, t=0.

For each %, there will be ons term from the integration of

cosh =+ %, which ig infinite at (=0. When the individual solutions
are superimposed In a gerles, the cosh * L terms are removed by

imposing equation (18). Terms of % (t) which are to be removed by
equation (18) have been denoted by the symbol (=) in the table.

The elliptic integrals F and E are complete and hence constant
for [{]|<m. Also T2 is taken to be zero for [{|Sm, since w
was to be only the real part of the function resulting from an inte—
gration.

An arbitrary dihedral angle can be added to the wing surface
along the wing center line without changing the 1ift distribution as
long a8 no part of the wing is far from the 2z=0 plene. Thus a term,
a constant timés %, can be added to the equation of the surface
without changing w({) or u(f{). The value of this constant determines
the dihedral angle along the wing center line. It can be seen

T e e e Sy e e e e n g e et e ort = = s e e < v,
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mathematicelly that a term & equals constant times §{ will be

proportional to %, and w (which equals %.x%) will be zero.

Such a term added to the equation of the wing surface has the
effect of shifting the stream sheet in which the wing lies so
that it dces not pass through 2z=0 on the Mach cone. However,
such a departure is allowable under the condition that no part of
the wing surface sheet lies far from the 2=0 plane. This
represents an approximation which is valid to the same order of

magnitude as the practice of calculating g-g- in the 2z=0 plane

rather than in the wing surface. For example, Stewart's solution

for the flat triangle ylelds a V—shaped wing—surface cross section
which is equivalent to a flat triangle when the dihedral angle 1s

removed.

Exsmples of Specific Lift Distribubtions

Four cases have been worked out using f£,(¢), £, (t), and £ (t)
in various combinations which comply with equation (18). The

expressions for f£(t), u(l), w(f), and %(g) are listed in each case.
Graphs are dravn of u and % for ©7=1.0, m=0.577 in figure 2.
For purposes of comparison, the £lat triangle and constant load
triangle are also included in the figure.

The wing-surfece shapes of figure 2 are drawn to a square scale.
(The unit of length in the horizontal directlon is equal to the
vertical unit of length.) The 2z=0 plane is the horizontal line
above the wing. The semispan of the wing is in each case equal to
0.577 of the radius of the Mach c¢ircle., The leading point of the
wing would be at the origin of the coordinate system, a distance
ahead of the plane depicted in the figure equal to the.radius of the
Mach circle In thet plane.

The cases conslidered are most easily evalualbed by the use of

the following tabulated expressions for u, w, and %:

0

u(t) =B [a.ouo + zbaa—:. Uz (§):|

=)
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0

w() =B [aoYo + Z ban— Ven— (g)]

=1

ﬁ-(;) =3B [30‘23"’ i bop-y 2ot (Q)J

x
=1

The term by y will be zero for nd>@2 In the cases congldered
here.

The coefficlent &, mey be taken egual to 1 or 0. If a, 1s

equal to O, bl my be taken as 1, and by can be chosen with a
value such that the cosh ™ & +term does not appear in w'(t) or the

?
() term does not appear in % (t). This choice is equivalent to
satisfying equation (18). -

From equation (17),
B oL
7 (ka b, )

The coefficlent of dreg due to 1ift was found by & graphical
integration of equation (3).

A term D|{| 1s added to Z(t) to make allowance for the

arbltrary dlhedral angle at the center line of the triangle., For
example, D can be given the value requirsed to place the leading
edges at the same vertical height as the center line. This value
was used In the cases consldered here.

-
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Case I
2
2(8) = -20% 1 [log —E—E - = (&= Q""—-mz)]

u(t) = & (rt—n% @)

w(t) = -Z% Y ;mz cosh"lA %—%S‘ + cosh™>

)1

-m

-2 [x(@-m(m}}

20 - % {5 (52 con [32] - 52 con |35

_ﬁ <Jf_fz'— Ig[cos_J'g) —% [K (A/f?)—E(»/lez_)] —DIQI}

CL=1 n = 0.577 D= 1.486 Cp = 0.25
¢ % ¢ *

0 —0.459 0 0.182
.05 -.429 .1 -188
.10 —. ok .2 .201
.15 -.383 .3 .228
.20 —.366 A -271
.22 —.361 5 +341
.2k —.356 S5TT -500
.26 —.353
.28 -.350
o30 _131"7
.35 —.346
R.Te} -.350
A5 -.362
.50 —-.38%

.55 - 121

OTT —.159

_ - _ _ e e e e —————
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Case I

w(§)=%{——-‘l;m [c -2 | b + cosh™ ]g-z%g— ]—‘I% —t”

Z c J/ 1-m2 §+m — {-m | 1-mt
=) 1%‘{ < s 'T“‘hlz—_ml)
—% [.ﬁ—ga - t] cos—lg] - B—ig [(2+;2) /i-t2-3 [¢] cos™ g:l
+ ﬁ [(Mma)E( JimE) — 5m2 K(Jﬁé)] _p |t }
m
Cr, =1 m = 0.577 D = 22.481 Cp = 0.26
_t & 4 u
0 -0.546 o] 0.196
.05 -~ 489 1 .20k
.10 ~ ko .2 .20
.]5 —"c)'l'O6 03 0253
.20 : -.380 A .286
.22 -.373 5 .302
24 ~.367 STT .250
.26 —.363
.28 -.361
.30 ‘ —.360
035 —0365
.II-O "'0382
A5 ~. 1410
.50 .1 Te
'55 ‘-050)'1'

'577 _05)'|'6

T e e~ e et e e s e
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Case TIIT

- J
£(t) = - i[m (—t2=P) +-3m—3-(§— a-mz)e']
u(t) = %L- 3—:[3- (2§2+mé)v m2—§2
o) = L2 mve | 2 S, S
= == (= _+-3§(2 ) E (J12®) =2 x ( —mz)}

£() =L {- o [<e+g2> S -3 cos"’"g]

ﬁs[(e-ma) E (J/1x®) -n? K (JT—EE—)]—DKI}

+

O =1 m = 0.577 D = 10.50 Cp= 0.28
Z

¢ T

0 ~0.633
o05 e 5)4'9
.10 -~ 481
.15 o™ 1"29
.20 —. 39k 4 u
.22 —-.385
.24 -.378 0 0.212
26 ~.373 -1 224
.28 -372 .2 -2h2
.30 372 .3 279
.35 ~ 385 'h .300
JB9 -k 5 -265
A5 - 457 577 0
.50 -.515 *
.55 —-. 588

S5TT —. 633
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Cage IV

tim 1
£(t) = 3% 1 [103 = (t=/t2=?) + —;—3 (¢ —./ga—mz)s]

Y 8/2
w(0) = 2L [« - 25 @)

/12 -1 |1+m¢ -1 |1
w(§)=39-—£‘r - I:coshl E-:%-{ +c:ots:}:1l g—__—:;-g- ]

+§_f{3[(1+m2)m<~/iﬁ~?>—amzx(~/rmz)]}

20 = FTT(F oo™ [~ 2 o™ | ] )

-2 (WAt o] eos™ £) - Bo 1(24t2)/17 - 31t | cont)

+ 5%5 [(Ln®) E (W 1-0°) -en®K (V1)1 - D |¢] }

C =1 m = 0.577 D = 11.984 Cp = 0.26
Zz Z
¢ x 4 x g -
0 -0.517 0.28 —0.357 0 0.192
.05 - 469 .30 ~.356 .1 .198
.10 —-.1430 .35 —. 359 .2 .216
.15 —.398 .40 -371 .3 245
.20 -. 376 45 —.39% A .281
.22 —. 369 .50 -—. 428 .5 .316
.2k —. 364 .55 - 476 STT .333

.26 —. 360 STT 517
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EVALUATION OF RESULTS

As can be seen In figure 2, the theoretical cosfficients of
drag due to lift of the camber shapes consldered here are all larger
than that of the flat triangle. In practice, however, it is possible
that case II and case IV would have lower drag then the flat triangle
at soms values of 1lift coefficient because of the suppression of
large adverse pressure gradients.

Quite possibly case II and case IV would be capable of atteln—
ing a higher 1ift coefficient than the flat triangle because of
thelr favorable pressure gredients, although the flat triangle
pressure distribution would be superimposed on their pressures at
1ift coefficients other than that for which they are designed.

Case III has the most radical camber, which might cause
uncalculated additions to the drag as well as flow separation.

Theoretically the dilhedral angle in the surface shape is
arbitrary. In practice, however, variation of this parameter might
result in an optimm of characteristics at other angles than those
chosen in figure 2.

While the linear theory cannot be expected to apply for values
of 1ift coefficlient greater then about 0.25, the calculations were
made at a 1ift coefficient of omne to better illustrate the wing—
surface shapes. This value of 1ift coefficient, 0.25, is also an
approximate 1limit beyond which the assumption that no part of the
wing lies far from the z = 0 plane is invalid.

These solutions are applicable to swept—back or other wings
obtained by cutting out the rear of the triamgle along lines such
that no part of the remaining wing lies within the zone of influence
of the parts removed. '

Ames Aeronautlcal ILeboratory,
National Advisory Committee for Aeromautics,
Moffett Fileld, Calif.

APPENDIX A

Symbols

B common factor of u, w, and z which relates the magnitude of
cember to the 1ift coefficient
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Cp coefficlent of drag due to 1lift
CL 1ift coefficient

D constant, the value of which determines the arbitrary
dihedral angle at the center line of the triangle
E elliptic integral of the second kind (either complete of
incomplete)
y+iz
€ complex variable equal to
X+ (fXB-yR—g2

£(t) analytic function of the complex varisble { such that the
real part of f({) equals u

F incomplete elliptic integral of the first kind -

)4 complete elliptic Integral of‘the first kind

m horizontal slope of the leading edge 6f the wing

M Mach number (equal to~ﬂ§ )

4p the difference in pressure coefficlent between upper and
1 lower wing surface

q dynamic pressure <;§ﬂﬁi>

8 Wwing area

u,v,w fractional perturbation velocities as fractlons of the stream
veloclity

ut u divided by B
v stream veloclty

X,y,2 Cartesian coordinates

p€
1+

¢'x' dummy variazles used in integrations when a limit of integre—
tion 1is or x

¢ equel to %, also used as complex variable equal to

B e s et s s e
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|| absolute value

() terms in the equation of the wing surface which are to be
removed by the superposition of other independent solutions

APPENDIX B
SAMPIE CAILCUIATION OF EQUATTIONS IN TABLE OF u,w,ARD;—

From equation (5)

£1(8) = i<g—nﬂ >

Since the subsequent calculations are mede in the plene
z =0, { is a real varisble equal to %.

—qfLi__ &
i<m n/ 22 >d§
From equation (7)

rea.lpa.rtl; f———g—df']
¥y = fgsfl___fe_ fg:{g-'__. (1)

m

i

Wi

1

= (B2)

fQE_g’—_z at? = 4/1~t2— cosn™

1 g*

[

CAT L
e, et

SACE . B
L/:: e ate _1 e dt for t<m (B3)

The last equallty holds because the second term on the right
of equation (B3) is imaginery for t<p

e v —— = e+ n ~ — —em———— _— e e r———

o
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25
2
With the substitution, r2 = L1=o_
] 1-m=
m 2 1
f‘kﬁ_d§=_(l‘m2)f r2dr
1 WA 2-m2 o #1=x2 Ji{1m2)r2
=fl.£—(1-m2)r2<1r_fl ar
° 12 o /12 J/J1{1-m2)r2

The two terms on the right of the last equelity are recognized as
complete elliptic integrals of the second and first kind, respectively,
so that

E—_ﬁ_ at* = E(/1-m2) — K(J/1=22) for (Sm
), =

1

(Bh)
The same substitution leads to the result

/;g ﬁ_z—g-'%:—me— at' = E <sm—1%iJf—m3)

—7 (s1a™ J«’%—__:_; JEEE )ror Bn ()

These expressions all apply for { negative as well as
positive because w; 1is an even function about & = O.

Thus from (Bl), (B2), (B3), (B4), and (B5)

Wy = %‘1- {;ﬁ—? — cosh™ ~E (/1~m2) + K(/1-m2) }for lg l <m

1

o

e bt b e S A i
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and

= % {Ji? — cosh™ t

l] ~E <sm-1% JT-E)
+F <sm—1%,,/1—'—52->} for |tRm

From equation (1b)

¢l '
21 _ _ lglﬁl wi (g ) at! (B6)

x ;2

Since the dihedral angle at the center of the triangle is
arblitrary, the elliptic integrals, which are complete and hence
constant for [{[Sm, need not be included in the integration.
However, to achieve the correct angle of attack at the center line,
they must be taeken into account. This operation can be accomplished
most simply by the use of equation (1la), which is

i fl; (&) e

Thus along the center line, the term of 2z; from the elliptic
integrals in the expression for w; is

[ -sm® Ja-Ex-z] o0

The terms resulting from the integration of cosh - ,l, will
be removed by a superposition of other solutions accord
equation (18) to avoid an infinite angle of attack at the center
line. Such terms are denoted by the symbol (®) in the expression

23
for —=.
X

The only term of wy not yet considered is %‘1-,/ 1—t2 Inserting

this term in (B6) yields

|§'f|§| ]""_ - d§'=—[»/1_—zé— [¢] cos™ Q:l (B8)

§2
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Thus from (B6), (BT), and (B8)
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Figure |.- Cambered fr/'angu/arA wing at an angle
of attack showing the coordinate system.



Flat Iriangle Constant [oad Case I

Plane, z=0 >~ e
N /
Surface shape \ B o~ P vt
(z/%) \lf

Lift distribution

A1
/
<

Y P
() »a _
Theorelical GD 235 29 25
, Case IT Case Il Case IV
Plane, z=0 :
Surface shape = A |
(z/x) AN , \ ‘ N N
S , ' | . P
Lift distribution N 1 L _,,/
(u) ‘/ : \\
Theoretical G‘D 26 28 25

R
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